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Building on the work of Gerstenhaber and Schack, we define the Hochschild complex

of a presheaf (or a pseudofunctor) A on a category U as the Hochschild complex of

an associated “U-graded” category, motivated by the classical correspondence between

pseudofunctors and fibered categories. We show that this complex is a B∞-algebra which

controls the deformation theory of A as a pseudofunctor.

1 Introduction

In [2–4], Gerstenhaber and Schack study deformation theory and Hochschild cohomology

of presheaves of algebras. For a presheaf A, these authors define a Hochschild complex

CG (A) and they construct a single algebra A for which they prove the existence of isomor-

phisms of Hochschild cohomology H Hn
G (A) ∼= H Hn(A) [3]. Unlike in the case of algebras,

there is no 1-1 correspondence between the first-order deformations of a presheaf and

its second Hochschild cohomology.

This paper is the first one in a broader project, where the intention is to put

the results of Gerstenhaber and Schack in a different perspective, and extend them,

by introducing map-graded categories and their Hochschild cohomology. Map-graded
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categories can be regarded as “group-graded algebras with several objects,” where the

word “map” refers to the morphisms in an underlying base category U . Our original

interest in Hochschild cohomology for map-graded categories stems from its role in the

existence of a local to global spectral sequence for Hochschild cohomology of general

ringed spaces, a result to be proved in a subsequent paper (the proof of a special case

can be found in [9]).

In the first part of this paper, we work out the algebraic correspondence between

pseudofunctors on U with values in k-linear categories, and fibered U-graded categories.

This is a linear version of the classical correspondence between pseudofunctors and

fibered categories [1].

Map-graded categories are algebraically very close to ordinary algebras. For a

U-graded category a, we define a Hochschild complex C(a) that shares all the “higher

structure” with the Hochschild complex of an algebra: it is a B∞-algebra [6]. As such, it

controls a natural deformation theory of a.

The main point that we want to make is that for a presheaf, or more general

pseudofunctor,A, putting C(A) = C(a) where a is the U-graded category associated toA, is

a sensible definition for the Hochschild complex ofA. TheU-graded category a can be seen

as a variant of Gerstenhaber and Schack’s algebra A. When the category U is a poset, a can

equivalently be described as a linear category in which a(AV , AU ) = 0 unless V ⊂ U (this is

the point of view taken in [8–10]). While these zeros do not affect the deformation theory,

they precisely reduce the Hochschild complex to the “U-graded” Hochschild complex.

When U is moreover finite, then this linear category a can equivalently be described as

a matrix algebra, and then this is precisely the algebra A. However, for a general U ,

Gerstenhaber and Schack first doubly subdivide U in order to obtain a poset, and then

look at the algebra of the induced presheaf on this poset to arrive at the algebra A. They

end up with

• the complex CG (A), which lacks the beautiful structure of C(A), for example,

it fails to be a dg Lie algebra;

• the quasi-isomorphic complex C(A), which is a B∞-algebra, but which is as-

sociated to an object A which is already relatively “far” from the original

presheaf.

For this reason, we propose (the quasi-isomorphic) C(a) as a better candidate Hochschild

complex of A. Thanks to the correspondence between pseudofunctors and fibered map-

graded categories, one could argue that a really is A in a sense, and in the second part

of the paper we prove that C(a) explicitly controls the deformation theory of A as a
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pseudofunctor. This explains why the strict presheaf deformations considered by Ger-

stenhaber and Schack are not enough to understand the entire Hochschild cohomology.

2 Map-Graded Categories, Fibered Map-Graded Categories, and Pseudofunctors

Let U be a small category and k a commutative ring. In this section, we introduce U-

graded categories and we give a detailed account of a k-linear version of the classical

correspondence between pseudofunctors and fibered categories [1] (see also [11]).

2.1 Map-graded categories

Definition 2.1. A U-graded k-quiver a consists of the following data: for every object U ∈
U , we have a set of objects aU , and for every morphism u : V −→ U in U and objects A ∈ aV ,

B ∈ aU , we have a k-module au(A, B). A precomposition µ on a consists of operations

µu,v,A,B,C : au(B, C ) ⊗ av(A, B) −→ auv(A, C ).

A preidentity id on a consists of elements

id A ∈ a1(A, A).

We say that

(1) (a, µ) is a U-graded associative k-quiver (and µ is a composition on a) if the

relations

µw,uv,A,C ,D(
µu,v,A,B,C ⊗ 1aw (C ,D)

) = µwu,v,A,B,D(
1av (A,B) ⊗ µw,u,B,C ,D)

are satisfied;

(2) (a, µ, id) is a U-graded k-quiver with identity (and id is an identity on (a, µ))

if the relations

µu,1,A,A,B(
1au(A,B) ⊗ id A) = 1au(A,B) = µ1,u,A,B,B(

id B ⊗ 1au(A,B)
)

are satisfied;
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(3) (a, µ, id) is a U-graded k-category if a is a U-graded associative k-quiver with

identity. �

Throughout, we will freely suppress sub- and superscripts whenever they are

clear from the context. For example, we will formulate condition (1) simply as µ(µ ⊗ 1) =
µ(1 ⊗ µ) and condition (2) simply as µ(1 ⊗ id) = 1 = µ(id ⊗ 1).

Remark 2.2. If U has a single object ∗ and a∗ has a single object ∗′, then G = U (∗, ∗) is a

monoid and a U-graded k-category(a, µ, id) corresponds to a G-graded k-algebra A with

Ag = ag(∗′, ∗′). Hence, map-graded categories are multiobject versions of monoid-graded

rings. �

Definition 2.3. A prefibered structure δ on a U-graded quiver a consists of elements

δu,A ∈ au(δ∗ A, A)

for u : V −→ U and A ∈ aU , where the objects δ∗ A ∈ aV are part of the structure. Let µ

be a precomposition on a U-graded quiver a. A morphism δ ∈ au(B, C ) for u : V −→ U is

called cartesian if for every v : W −→ V and A ∈ aW, the map

µ(δ, −) : av(A, B) −→ auv(A, C )

is an isomorphism of k-modules. We say that

(1) (a, µ, δ) is a fibered U-graded k-quiver if the morphisms δu,A are cartesian.

(2) (a, µ, id, δ) is a fibered U-graded k-category if it is both fibered, and a U-

graded k-category. �

If no confusion arises, we will drop the mention of k from our terminology, for

example, we will speak about U-graded categories rather than U-graded k-categories.

Definition 2.4. Let (a, µ, id) be a U-graded category. A morphism ρ ∈ a1(A, B) is called

an isomorphism if there exists a ρ ′ ∈ a1(B, A) with µ(ρ ′, ρ) = id A and µ(ρ, ρ ′) = id B . �

If ρ is an isomorphism, then a ρ ′ like in the definition is necessarily unique and

will be called the inverse ρ−1 of ρ.
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The following lemma shows that on a map-graded category, a fibered structure

is, if it exists, unique up to canonical isomorphism.

Lemma 2.5. Let (a, µ, id) be a map-graded category. Suppose δ1 ∈ au(B, C ) and δ2 ∈
au(A, C ) are cartesian morphisms. There is a unique morphism ρ ∈ a1(A, B) with δ1ρ = δ2

and ρ is an isomorphism. �

Proof. Easy. �

Definition 2.6. Let a and b be U-graded quivers. A quiver morphism ϕ : a −→ b consists

of maps ϕU : aU −→ bU and morphisms

ϕu,A,B : au(A, B) −→ bu(ϕA, ϕB)

for every u : V −→ U , A ∈ aV , and B ∈ aU . If (a, µ, id) and (b, µ′, id ′) are U-graded cate-

gories, then we call ϕ a morphism of U-graded categories if the following conditions

hold:

(1) ϕµ = µ′(ϕ ⊗ ϕ);

(2) ϕ(id) = id ′.

If a and b are moreover fibered, then a fibered quiver morphism contains additional

isomorphisms

γ u,A ∈ b1(δ
′∗ϕ(A), ϕ(δ∗ A)),

and (ϕ, γ ) is a fibered morphism of U-graded categories if, in addition to (1) and (2),

(3) µ′(ϕ(δu,A), γ u,A) = δ′u,ϕA

holds. �

These notions give rise to categories Mapgr of U-graded categories and mor-

phisms, and Fibgr of fibered U-graded categories and fibered morphisms. Let Mapgriso ⊆
Mapgr and Fibgriso ⊆ Fibgr be the groupoids containing only the isomorphism of the am-

bient categories.

Proposition 2.7. The natural functor Fibgriso −→ Mapgriso is fully faithful. �
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Proof. Consider fibered U-graded categories (a, µ, id, δ) and (b, µ′, id ′, δ′) and an iso-

morphism ϕ : a −→ b of U-graded categories. This implies that δu,A ∈ au(δ∗ A, A) gets

mapped to a cartesian morphism ϕ(δu,A) ∈ bu(ϕ(δ∗ A), ϕ(A)). On the other hand, δ
′u,ϕ(A) ∈

bu(δ
′∗ϕ(A), ϕ(A)) is cartesian too, whence, by Lemma 2.5, there is a unique isomorphism

γ u,A satisfying condition (3) of Definition 2.6. �

It will be convenient to consider fibered U-graded categories in which for every

A ∈ aU , we have δ1U ,∗ A = A and δ1U ,A = id A ∈ a1(A, A). We denote the full subcategory of

these fibered-graded categories by Fibgr0 ⊆ Fibgr. The following proposition shows that

they form a skeletal subcategory.

Proposition 2.8. Let (a, µ, id) be a map-graded category. If there exists a fibered struc-

ture on a, then any two fibered structures δ1 and δ2 yield canonically isomorphic fibered-

graded categories (a, µ, id, δ1) and (a, µ, id, δ2). In particular, (a, µ, id, δ) is canonically

isomorphic to (a, µ, id, δ̃) ∈ Fibgr0 where we have only changed the δ1,A’s into 1A’s. �

Proof. This immediately follows from Proposition 2.7, since the identity is an isomor-

phism of U-graded categories. �

2.2 Bimodules over map-graded categories

Map-graded categories are in many respects similar to ordinary linear categories. How-

ever, to obtain a natural notion of modules, we need two of them.

Definition 2.9. Let a and b be U-graded categories. An a-b-bimodule M consists of

k-modules

Mu(A, B)

for u : V −→ U , A ∈ aV , B ∈ bU and morphisms

ρ : bu(C , D) ⊗ Mv(B, C ) ⊗ aw(A, B) −→ Muvw(A, D),

satisfying the following associativity and identity conditions:

(1) ρ(µ ⊗ 1 ⊗ µ) = ρ(1 ⊗ ρ ⊗ 1);

(2) ρ(id ⊗ 1 ⊗ id) = 1.



Hochschild Cohomology of Presheaves 7

A morphism f : M −→ N of bimodules consists of morphisms

Mu(A, B) −→ Nu(A, B)

of k-modules, satisfying fρM = ρN (1 ⊗ f ⊗ 1). �

We obtain a category BimodU (a, b) of a-b bimodules. As usual, we denote

BimodU (a) = BimodU (a, a) and call the objects a-bimodules. For ordinary linear categories

a and b, a-b-bimodules can equivalently be described as modules over the tensor product

linear category a
op ⊗ b. Remarkably, two U-graded categories a and b have an associated

“tensor product” a
op ⊗U b which is a linear category.

Definition 2.10. Let a and b be U-graded categories. The tensor product a
op ⊗U b is the

k-linear category with

Ob
(
a

op ⊗U b
) =

∐
u:V−→U

(aV × bU )

and

Hom((u, A, B), (u′, A′, B ′)) = ⊕u′=zuvav(A′, A) ⊗ bz(B, B ′). �

Proposition 2.11. There is an isomorphism of linear categories

BimodU (a, b) ∼= Mod(a ⊗U b). �

Proof. This is almost a tautology. �

2.3 Pseudofunctors

Let U be a small category and k a commutative ring as before.

Definition 2.12. A lax k-quiver A over a category U consists of the following data. For

every object U ∈ U , we have a k-quiver A(U ) (i.e. a set of objects Ob(A(U )), and for any

two objects A, B, a k-module A(U )(A, B)). Furthermore, for every map u : V −→ U in U ,

we have a map u∗ : Ob(A(U )) −→ Ob(A(V )).

A prelax structure l = (m, f , c) on A consists of the following operations.
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• For A = (A0, A1, A2) ∈ Ob(A(U ))3, there is a 2-ary operation

mU ,A ∈ Homk(A(U )(A1, A2) ⊗ A(U )(A0, A1),A(U )(A0, A2)).

• For A = (A0, A1) ∈ Ob(A(U ))2 and u : V −→ U , there is a 1-ary operation

fu,A ∈ Homk(A(U )(A0, A1),A(V )(u∗ A0, u∗ A1)).

• For A ∈ A(U ) and σ = (u : V −→ U , v : W −→ V ), there is a 0-ary operation

cσ ,A ∈ A(W)(v∗u∗ A, (uv)∗ A)).

A global preidentity z on A consists of a 0-ary operation

zA ∈ A(U )(A, 1∗ A)

for every A ∈ A(U ). A local preidentity 1 on A consists of a 0-ary operation

1A ∈ A(U )(A, A)

for every A ∈ A(U ). We say that

(1) (A, l) is an associative lax quiver (and l is a lax structure on A) if the following

relations hold:

(a) for A0, A1, A2, A3 ∈ Ob(A(U )), there is a relation

mA0,2,3 (1 ⊗ mA0,1,2 ) = mA0,1,3 (mA1,2,3 ⊗ 1);

(b) for A0, A1, A2 ∈ A(U ) and u : V −→ U , there is a relation

mu∗ A0,u∗ A1,u∗ A2 ( fu,A1,2 ⊗ fu,A0,1 ) = fu,A0,2mA0,1,2 ;

(c) for A0, A1 ∈ A(U ) and σ = (u : V −→ U , v : W −→ V ), there is a relation

mv∗u∗ A0,v∗u∗ A1,(uv)∗ A1 (cσ ,A1 ⊗ ( fv,u∗ A0,1 fu,A0,1 )

= mv∗u∗ A0,(uv)∗ A0,(uv)∗ A1 ( fuv,A0,1 ⊗ cσ ,A0 );
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(d) for A ∈ A(U ) and σ = (u : V −→ U , v : W −→ V , w : Z −→ W), there is a

relation

mw∗v∗u∗ A,w∗(uv)∗,(uvw)∗ (cuv,w,A0 ⊗ fw,v∗u∗ A,(uv)∗ A(cu,v,A0 ))

= mw∗v∗u∗ A,(vw)∗u∗ A,(uvw)∗ A(cu,vw ⊗ cv,u,u∗ A0 ).

(2) (A, l, z) is a lax quiver with global identity (and z is a global identity on (A, l))

if the following relations hold:

(a) for A, B ∈ A(U ),

mA,1∗ A,1∗ B ( f1,A,B ⊗ zA) = mA,B,1∗ B (zB ⊗ 1);

(b) for A ∈ A(U ),

mu∗ A,1∗u∗ A,u∗ A(cu,1,A, zu∗ A)=1u∗ A=mu∗ A,u∗1∗ A,u∗ A(c1,u,A, fu,A,1∗ A(zA)).

(3) (A, l, 1) is a lax quiver with local identity (and 1 is a local identity on (a, l)) if

the following relations hold:

(a) for A, B ∈ A(U ),

mA,A,B (1 ⊗ 1A) = 1 = mA,B,B (1B ⊗ 1);

(b) for A ∈ A(U ) and u : V −→ U ,

fu,A,A(1A) = 1u∗ A.

(4) (A, l, z, 1) is a lax functor if it is an associative lax quiver with local and global

identities.

If a lax quiver A is endowed with a local preidentity 1, a map a : A −→ A′ in A(U ) is

called an isomorphism if there is a map a′ : A′ −→ A with m(a′, a) = 1A, m(a, a′) = 1A′
. In

all the above terminology, we replace the word lax by pseudo if the morphisms cσ ,A and

zA that occur, are isomorphisms. �

Remark 2.13. In the above definition, 1(a) combined with (3) expresses that the opera-

tions m and 1 make the quivers A(U ) into categories. If 1(a) and (3) hold, then 1(b) com-

bined with 3(b) expresses that the operations f define functors u∗ = fu : A(U ) −→ A(V ).
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If 1(a), 1(b), and (3) hold, then 1(c) expresses that the operations c define natural transfor-

mations v∗u∗ −→ (uv)∗. If 1(a), 1(b), and (3) hold, then 2(a) expresses that z defines natural

transformations zU : 1A(U ) −→ (1U )∗. �

Example 2.14. A presheaf of categories on U is a pseudofunctor A on U with (uv)∗ =
v∗u∗ and cu,v,A = 1v∗u∗ A. �

Definition 2.15. Let A and B be lax quivers over U . A morphism of lax quivers (g, α) :

A −→ B consists of the following data:

• maps gU : Ob(A(U )) −→ Ob(B(U ));

• for A, B ∈ A(U ), maps

gA,B : A(U )(A, B) −→ B(U )(gA, gB);

• for A ∈ A(U ), u : V −→ U , elements

αu,A ∈ B(V )
(
u∗
BgU (A), gVu∗

A(A)
)
.

If (A, l, z, 1) and (B, l ′, z′, 1′) are pseudofunctors, then we call (g, α) a morphism of pseudo-

functors if the αu,A are isomorphisms and the following conditions hold:

(1) gm = m′(g ⊗ g);

(2) m′(gf , α) = m′(α, f ′g);

(3) m′(α, c′) = m′(g(c), α, α);

(4) g(1) = 1′;

(5) m′(α1, z′) = g(z). �

These notions give rise to a category Psfun of pseudofunctors and their mor-

phisms.

Remark 2.16.

(1) Conditions (1) and (2) express functoriality of gU : A(U ) −→ B(U ). Condition

(3) expresses naturality of α : f ′g −→ gf .

(2) Morphisms of pseudofunctors are usually called pseudonatural transforma-

tions in the literature. �
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Lemma 2.17. A morphism (g, α) : A −→ B of pseudofunctors is an isomorphism in Psfun

if and only if every component gU : A(U ) −→ B(U ) is an isomorphism of quivers, i.e.

if it is an isomorphism on objects, and if every gA,B : A(U )(A, B) −→ B(U )(gA, gB) is an

isomorphism of k-modules. �

Proof. If the gU : A(U ) −→ B(U ) are functors and isomorphisms of quivers, we have in-

verse functors (gU )−1 : B(U ) −→ A(U ). To complete these into an inverse morphism (g−1, β),

it suffices to transform α : fBgU −→ gV fA into β−1 = gV −1
αgU −1. �

Lemma 2.18. Consider a pseudofunctor (B, l ′, z′, 1′) and a lax quiver A. Suppose we are

given a morphism (g, α) : A −→ B of quivers such that

• the gU : A(U ) −→ B(U ) are isomorphisms of quivers;

• the αu,A are isomorphisms in B(V ).

There is a unique structure (l, z, 1) on A such that

• (A, l, z, 1) is a pseudofunctor;

• (g, α) : A −→ B is an isomorphism of pseudofunctors. �

Proof. There is an obvious way to transport the structure from B to A, namely

m = g−1m′(g ⊗ g), f = g−1m′(α, f ′g, α−1), c = g−1m′(α, c′gA, α−1, α−1), 1 = g−1(1′gA), and z =
g−1m′(α, z′gA). It is immediate to check that the conditions of Definitions 2.12 and 2.15

are fulfilled, and by Lemma 2.17, (g, α) becomes an isomorphism of pseudofunctors. �

It will be convenient to consider lax quivers (A, 1, 1) with local preidentity 1 and

with trivial global preidentity z = 1, i.e. such that

(1) for 1U ∈ U (U , U ), we have 1∗ = 1Ob(A(U ));

(2) zA = 1A ∈ A(U )(A, A).

We will denote the full subcategory of pseudofunctors with trivial global identity z = 1 by

Psfun0 ⊆ Psfun. The following proposition shows that they form a skeletal subcategory.

Proposition 2.19. Every pseudofunctor (A, l, z, 1) is canonically isomorphic to a pseud-

ofunctor (Ã, l̃, z̃, 1̃) ∈ Psfun0 with (Ã(U ), m̃, 1̃) = (A(U ), m, 1). �

Proof. We define the lax quiver Ã by Ã(U ) = A(U ), ũ∗ = u∗ for 1 �= u and 1̃U ,∗ = 1Ob(A(U )).

Next we define isomorphisms of quivers gU = 1A(U ) : Ã(U ) −→ A(U ) and A(U )-

isomorphisms αu,A = 1u∗ A for 1 �= u and α1,A = (zA)−1 ∈ A(U )(1∗ A, A). According to

Lemma 2.18, there is a unique structure (l̃, z̃, 1̃) on Ã such that (g, α) becomes an
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isomorphism of pseudofunctors. Moreover, this structure has m̃ = m, 1̃ = 1, f̃u = fu

for 1 �= u and f̃1 = m((zB )−1, f , zA) = 1 and z̃ = m((zA)−1, zA) = 1A. �

Obviously, presheaves on U belong to Psfun0.

2.4 Pseudofunctors versus fibered map-graded categories

There is a well-known correspondence between pseudofunctors and fibered categories

going back to [1] (see also [11]). In this section, we investigate this more closely in the

k-enriched setting.

Let A be a lax quiver on U . We define an associated U-graded quiver a = a(A) by

au(A, B) = A(V )(A, u∗B)

for u : V −→ U in U , A ∈ A(V ) and B ∈ A(U ).

First we will look at preidentities and precartesian structures. Suppose z is a

global preidentity on A. Then we define a preidentity id on a by putting

id A = zA ∈ A(U )(A, 1∗ A) = a1(A, A). (1)

Clearly, this defines a 1-1 correspondence between global preidentities on A and prei-

dentities on a.

Suppose 1 is a local preidentity on A. Then we define a prefibered structure δ on

a by putting δu,A,∗ A = u∗ A and

δu,A = 1u∗ A ∈ A(U )(u∗ A, u∗ A) = au(u∗ A, A). (2)

Conversely, to give a local preidentity on A we have to specify elements 1A ∈ A(U )(A, A)

for every A, and this cannot be done starting from a prefibered structure alone. In fact,

in order to define such a local preidentity on A starting from the prefibered structure on

a, we need a global preidentity z in which the zA ∈ A(U )(A, 1∗ A) are isomorphisms with

respect to a composition on A.

Now consider a prelax structure l = (m, f , c) on A. We define a precomposition

µ = µ(l) on a in the following way. We have to give maps

µ : au(B, C ) ⊗ av(A, B) −→ auv(A, C ),
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i.e. maps

µ : A(V )(B, u∗C ) ⊗ A(W)(A, v∗B) −→ A(W)(A, (uv)∗C ).

Consider

f : A(V )(B, u∗C ) −→ A(W)(v∗B, v∗u∗C )

and

c ∈ A(W)(v∗u∗C , (uv)∗C ).

We put

µ = m(c ⊗ m( f ⊗ 1)).

Proposition 2.20. If (A, l, z, 1) is a pseudofunctor, then (a, µ, id, δ) is a fibered-graded

category. �

Proof. To prove this, let us write down all the conditions on a in terms of A. For δ to be

cartesian, the relevant map µ(δu,A, −) : A(W)(A′, v∗u∗ A) −→ A(W)(A′, (uv)∗ A) is given by

µ(δu,A, a) = m(c, m( fv(1u∗ A), a)) = m(c, a), (3)

and since c is an isomorphism, so is the composition with c. The morphisms id are

identities for µ if and only if the following identities hold true for every u : V −→ U ,

A ∈ A(V ), B ∈ B(U ), a ∈ au(A, B) = A(V )(A, u∗B):

cB,1,u1∗(a)zA = a = cB,u,1u∗(zB )a. (4)

In (2), we may equivalently replace the right-hand side equality by

cB,u,1u∗(zB ) = 1u∗ B , (5)
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which is precisely the right-hand side of condition 2(b) in the global identity condition.

Using the local identity condition, we can rewrite the left-hand side of (2) as

cB,1,uzu∗ B = 1u∗ B , (6)

which is precisely the left-hand side of condition 2(b). It remains to prove associativity

of µ, which follows from an explicit straightforward computation with the definition

of µ. �

Let a be a U-graded quiver with a prefibered structure δ. We define a lax quiver

A = A(a) by Ob(A(U )) = aU ,

A(U )(A, A′) = a1(A, A′)

and for u : V −→ U , u∗ A = δ∗ A. Suppose id is a preidentity on a. Then

1A = id A ∈ a1(A, A) = A(U )(A, A) (7)

defines a local preidentity on A. Furthermore, the prefibered structure yields elements

δ1,A ∈ a1(u∗ A, A) = A(U )(u∗ A, A).

Now suppose (a, µ, id, δ) is a cartesian-graded quiver with a precomposition and a prei-

dentity. Then we have an isomorphism

µ(δ1,A, −) : a1(A, u∗ A) −→ a1(A, A) = A(U )(A, A),

and we define a global preidentity on A by letting

zA ∈ a1(A, u∗ A) = A(U )(A, u∗ A)

equal the inverse image of 1A under this isomorphism. In other words, zA is the unique

morphism with

µ(δ1,A, zA) = id A. (8)
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Furthermore, we can now define a prelax structure l on A. We put

mA,B,C = µ1,1,A,B,C : a1(B, C ) ⊗ a1(A, B) −→ a1(A, C ).

For u : U −→ V and A, B ∈ A(U ), we define fu,A,B to be the composition

a1(A, B)
µ(−,δu,A)

�� au(u∗ A, B)
µ(δu,B ,−)−1

�� a1(u∗ A, u∗B).

In other words, for a ∈ a1(A, B), u∗(a) ∈ a1(u∗ A, u∗B) is the unique morphism for which

µ(a, δu,A) = µ(δu,B , u∗(a)). (9)

Finally, for u : V −→ U , v : W −→ V , A ∈ A(U ), we consider

a1(v∗u∗ A, v∗u∗ A)
µ(δv,u∗ A,−)

�� av(v∗u∗ A, u∗ A)
µ(δu,A,−)

�� auv(v∗u∗ A, A)

and

µ(δuv,A, −) : a1(v∗u∗ A, (uv)∗) −→ auv(v∗u∗ A, A),

and put

cu,v,A = µ(δuv,A, −)−1(µ(δu,A, µ(δv,u∗ A, idv∗u∗ A))).

In other words, cu,v,A ∈ a1(v∗u∗ A, (uv)∗ A) is the unique morphism for which

µ(δuv,A, cu,v,A) = µ(δu,A, µ(δv,u∗ A, idv∗u∗ A)). (10)

Proposition 2.21. If (a, µ, id, δ) is a fibered-graded category, then (A, l, z, 1) is a pseudo-

functor. �

Proof. Let us prove first that z is a global identity for A. Consider b : C −→ D in A(U ).

We have to show that

m(1∗(b), z) = m(z, b).
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We compute µ(δ, µ(1∗(b), z)) = µ(µ(δ, 1∗(b)), z) = µ(µ(b, δ), z) = µ(b, µ(δ, z)) = µ(b, id) = b =
µ(δ, µ(z, b)), whence the desired equality follows, since δ is cartesian.

Next we have to show that

m(c, z) = 1 = m(c, u∗z).

We compute that µ(δ, µ(c, z)) = µ(δ, µ(δ, z)) = µ(δ, 1) = δ and that µ(δ, µ(c, u∗z)) =
µ(δ, µ(δ, u∗z)) = µ(µ(δ, z), δ) = δ, whence the result follows.

Let us prove that 1 is a local identity for A. Condition 3(a) is immediate and 3(b),

follows since µ(δ, u∗(1)) = µ(1, δ) = µ(δ, 1).

Finally, we have to prove the list of associativity conditions. Condition 1(a) is

immediate. For 1(b), we compute µ(δ, u∗(a), u∗(b)) = µ(a, b, δ) = µ(δ, u∗(µ(a, b))). For 1(c),

we compute µ(δ, c, v∗u∗(a)) = µ(δ, δ, v∗u∗(a)) = µ(δ, u∗(a), δ) = µ(a, δ, δ) and µ(δ, (uv)∗(a), c) =
µ(a, δ, c) = µ(a, δ, δ). For 1(d), we compute µ(δ, c, w∗(c)) = µ(δ, δ, w∗(c)) = µ(δ, c, δ) = µ(δ, δ, δ)

and µ(δ, c, c) = µ(δ, δ, δ). �

Theorem 2.22. The above correspondence on objects extends to an equivalence of cat-

egories

Psfun ∼= Fibgr

that restricts to an isomorphism of categories

Psfun0
∼= Fibgr0

between the skeletal subcategories. �

Proof. Let us first explicitate the functor Psfun −→ Fibgr on morphisms. Let (g, α) :

A −→ B be a pseudonatural transformation. Put a = a(A), b = b(B). We are to de-

fine (ϕ, γ ) : a −→ b. On objects, ϕ coincides with g. For u : V −→ U , A ∈ aV , B ∈ aU , the

map

ϕu,A,B : A(V )(A, u∗B) −→ B(V )(gA, u∗(gB))
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is given by

ϕu,A,B = m′(α−1, g).

Furthermore, we put

γ u,A = m′(z′, αu,A) ∈ B(V )(u∗(gA), 1∗g(u∗ A)).

Calculations show that (ϕ, γ ) is a fibered morphism, and that we obtain bijections

Psfun(A,B) −→ Fibgr(a, b),

defining a functor Psfun −→ Fibgr. Let us now start with (A, l, 1, z), the associated

(a, µ, id, δ), and its associated (A′, l ′, 1′, z′). It then suffices to construct an isomorphism

A −→ A′ in Psfun. We first define a map g : A −→ A′ on the module level by

gA,B = m(zB , −) : A(U )(A, B) −→ A(U )(A, 1∗(B) = A′(U )(A, B).

Since zB is an isomorphism in A(U ), this is certainly an isomorphism. Next we define

αA = 1′u∗ A = zu∗ A ∈ A(V )(u∗ A, 1∗u∗ A) = A′(U )(u∗ A, u∗ A).

It remains to check that (g, α) defines a morphism of pseudofunctors. We

note that g(1A) = zA = id A = 1′A. We compute m′(g(a), g(b)) = m(c, 1∗(m(z, a)), m(z, b)) =
m(c, 1∗(z), 1∗(a), z, b) = m(1∗(a), z, b) = m(z, a, b) = g(m(a, b)). It follows from equation (9)

and another computation that f ′ = m(z, cu,1, f ), and consequently m′(α, f ′g) = f ′g =
m(z, cu,1, f (z), f ) = m(z, f ) = gf = m′(gf , α). Next, m′(g(c), α, α) = g(c) = m(z, c). To prove

that this expression equals c′, we verify equation (10). This amounts to the fact that

m(c, m(z, c)) = m(m(c, z), c) = c. Finally, we have to check that g(z) = m(z, z) satisfies the

relation for z′ in equation (8). Indeed, we have µ(δ, m(z, z)) = m(c, m(z, z)) = m(c, z, z) = z =
id.

It is not hard to see that the functors we defined between Psfun and Fibgr re-

strict to functors between Psfun0 and Fibgr0, and that the restrictions become inverse

isomorphisms of categories. �
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Note that the composition Psfun −→ Fibgr −→ Psfun mingles up the roles of local

and global identities. By restricting to pseudofunctors in Psfun0, this phenomenon be-

comes invisible. For our applications to deformation theory in the next section, we note

the following precise statement.

Proposition 2.23. Let (A, 1, 1) be a lax quiver with local preidentity and trivial global

preidentity, and let (a, id, δ) be the corresponding graded quiver with a preidentity and

a prefibered structure. The isomorphism Psfun0
∼= Fibgr0 induces a 1-1 correspondence

between

• lax structures l on A making (A, l, 1, 1) into a pseudofunctor;

• compositions µ on a making (a, µ, id, δ) into a fibered-graded category. �

Proof. This is clear. �

3 Hochschild Cohomology and Deformations

3.1 Graded colored operads

In this section, we introduce graded colored operads of k-modules, and we show that

they give rise to natural brace algebras and B∞-algebras. All the notions and proofs in

this section are immediate adaptations of [5], and most details are left to the reader. Let

us start by recalling the definition of a colored operad.

Definition 3.1. Consider a set X of “colors” and a symmetric monoidal category

M. An (a-symmetric) X-colored M-operad O consists of the datum, for every tuple

c = (cn, . . . , c0; c) of colors ci, c ∈ X, of an M-object O(c) of “operations,” together with

“compositions”

O(c) ⊗ ⊗n
i=0O

(
cki

i , . . . c0
i ; ci

) −→ O
(
ckn

n , . . . , c0
0; c

)

and “identities” 1c ∈ O(c; c), satisfying the operadic associativity and identity relations.

Morphisms of colored operads are defined in the obvious way. �

Example 3.2. Let V be a Set-quiver with associative multiplications

mU ,V ,W : V(V , W) × V(U , V ) −→ V(U , W).
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We define a colored Set-operad OV with a color set X = Mor(V) and

OV (vn, . . . , v0; v) =
⎧⎨
⎩

{∗} if vnvn−1 . . . v0 = v

∅ else

and no 0-ary operations. If, moreover, V has identities 1U ∈ V(U , U ) for m (i.e. if V is a

category), then we define OV,1 where the only difference with OV is the existence of 0-ary

operations

OV,1(1U ) = {∗}.

There is an obvious morphism of operads OV −→ OV,1. �

Example 3.3. Suppose O is an X-M-operad and F : M −→ M′ is a monoidal functor.

We define an X-M′-operad FO with

(FO)(cn, . . . c0; c) = F (O(cn, . . . c0; c))

and all operations induced by those of O. In particular, for the free k-module functor

F : Set −→ Mod(k), we denote kO = FO. �

For our purpose, we need the notion of a graded colored operad.

Definition 3.4. Let X be an X-Set-operad. An X -graded M-operad O consists of, for

every tuple (cn, . . . , c0, c) of colors in X and for every ξ ∈ X (cn, . . . c0, c), an M-object

Oξ (cn, . . . c0; c),

together with morphisms

Oξ (c) ⊗ ⊗n
i=0Oξi

(
cki

i , . . . c0
i ; ci

) −→ Oξ (ξn,...,ξ0)
(
ckn

n , . . . , c0
0; c

)

and “identities” 1c ∈ O1(c; c), satisfying “operadic” associativity and identity relations.

Morphisms of graded colored operads are defined in the obvious way. �

Remark 3.5. If M = Set, then an X -Set-operad corresponds precisely to an X-Set-

operad O, together with a morphism of X-Set-operads O −→ X . �
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Example 3.6. Let X be an X-Set-operad. We define an X -Set-operad X̃ with

X̃ξ (cn, . . . , c0; c) = {∗}

for every ξ ∈ X (cn, . . . , c0; c). �

Let X be an X-Set-operad. An X -graded M-object is an X-indexed collection

A = (A(c))c∈X of M-objects A(c). To an X -C-object A, we associate the X -M endomorphism

operad End(A) with

End(A)ξ (cn, . . . c0; c) = M(A(cn) ⊗ · · · ⊗ A(c0), A(c))

and where all the operations are given by substitution.

Definition 3.7. Let O be an X -M-operad. An O-algebra is an X -M-object A, together

with a morphism of X -colored operads

O −→ End(A). �

From now on, we take M = Mod(k).

For an X -graded operad O, we consider the Z-graded module C(O) with

C(O)n =
∏

cn−1,...c0;c∈X
ξ∈X (cn−1,...c0;c)

Oξ (cn−1, . . . c0; c).

We also consider the shifted object C(O) [1] with C(O) [1]n = C(O)n+1, and for φ ∈ C(O)n we

put |φ| = n − 1, the degree of φ in C(O) [1].

We obtain natural morphisms

C(O)n ⊗ C(O)n1 ⊗ · · · ⊗ C(O)nk −→ C(O)n+n1+···+nk−k,

defined by the components, for ξ ∈ X (cn−1, . . . , c0; c),

φ{φ1, . . . , φk}ξ =
∑

ξ=ξ ′(1,...,ξ1,...,1,ξn)

(−1)εφξ ′(
1, . . . , φξ1

1 , . . . , 1, φξk
k

)
(11)

with ε = ∑k
p=1 |φp|ip, where ip is the number of inputs in front of φp.

We recall the definition of a brace algebra.
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Definition 3.8. For a Z-graded k-module V , the structure of brace algebra on V consists

in the datum of (degree zero) operations

V⊗n+1 −→ V : (x, x1, . . . xn) 
−→ x{x1, . . . xn},

satisfying the relation

x{x1, . . . xm}{y1, . . . yn} =
∑

(−1)αx{y1, . . . , x1{yi1 , . . . }, yj1 . . . , xm{yim , . . . }, yjm , . . . yn},

where α = ∑m
k=1 |xk| ∑ik−1

l=1 |yl |. The dot product of the brace algebra is by definition x • y =
x{y}. The associated Lie bracket of the brace algebra is

[x, y] = x • y − (−1)|x||y|y • x.

An element 1V ∈ V0 is an identity for V if for any φ ∈ Vn, we have 1V • φ = φ and

φ{(1V )⊗n+1} = φ. �

Proposition 3.9. Let O be an X -graded operad. Then C(O)[1] is a brace algebra for the

brace operations (11). The identity elements 1c ∈ O1(c; c) define an element in C(O)1 which

is an identity for the brace algebra. �

Next we take X = OV for a small category V. It is clear that for an operation

µ ∈ C(O)2, the equation µ • µ = 0 expresses precisely that µ is associative.

Proposition 3.10. Let O be an OV-graded operad. There are bijections between

(1) maps of OV-graded operads kÕV −→ O;

(2) elements µ ∈ C(O)2 with µ • µ = 0;

(3) structures of homotopy G-algebra [5, Definition 2] on the brace algebra

C(O)[1]. �

As explained in detail in [12], a homotopy G-algebra is a special case of a B∞-

algebra [6]. In particular, in the case of Proposition 3.10, C(O)[1] becomes a dg Lie algebra

when equipped with the differential d = [µ, −], and is endowed with a cup product

φ ∪ ψ = µ{φ, ψ} (see also [7]).
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3.2 Hochschild cohomology of map-graded categories

Next we will apply the results of the previous section to map-graded categories. Consider

a Set-quiver U with associative multiplications, and for every U ∈ U a set aU . From this

we build the Set-quiver V with associative multiplications with Ob(V) = ∐
U∈U aU and for

A ∈ aV , B ∈ aU , V(A, B) = U (V , U ). Then OV and OV,1 are X-Set-operads with colors in X

given by

A B

V u
�� U

with A ∈ aV , B ∈ bU , and u : V −→ U in U . An OV-Mod(k)-object a consists in the datum,

for every color (A, u, B) as above, of a k-module

au(A, B),

in other words, this is precisely a U-graded k-quiver. The structure of kÕV-algebra on

a corresponds to a composition structure µ, making (a, µ) into an associative U-graded

quiver. If U is a category, then the structure of kÕV,1-algebra on a corresponds to the

additional datum of an identity structure id, making (a, µ, id) into a U-graded category.

Definition 3.11. For a U-graded quiver a, the Hochschild brace algebra C(a) of a is the

brace algebra C(End(a)) of Proposition 3.9. If (a, µ) is an associative U-graded quiver, the

Hochschild complex of a is C(a) with the B∞-structure of Proposition 3.10. �

Concretely,

Cn(a) =
∏

un−1,...,u0
A0,...An

Homk
( ⊗n−1

i=0 aui (Ai, Ai+1), aun−1...u0 (A0, An)
)

and the B∞-structure on C(a) is analogous to the structure on the Hochschild complex of

an associative algebra. The Hochschild cohomology of a is by definition the cohomology

of the complex C(a).

From now on, a is a U-graded category. As in the case of an algebra, Hochschild

cohomology can be expressed as an Ext in the category of bimodules. For this, we consider
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the a-bimodule a with

a(A, u, B) = au(A, B),

as well as its submodule k with k1(A, A) = k1A and ku(A, B) = 0 if (A, u, B) �= (A, 1, A) for

some A, and the quotient module ā = a/k.

With the isomorphism of Proposition 2.11 in mind, consider for u : V −→ U ,

A ∈ aV , and B ∈ bU the image PA,u,B of (A, u, B) under

a
op ⊗U a −→ Mod(a

op ⊗U a) ∼= BimodU (a, a).

Next, consider the bimodules

Bn
A,u,B = PA,u,B ⊗k

⊕
u=un−1 ...u0

A=A0,...,An=B

⊗n−1
i=0 aui (Ai, Ai+1)

and

B̄n
A,u,B = PA,u,B ⊗k

⊕
u=un−1 ...u0

A=A0,...,An=B

⊗n−1
i=0 āui (Ai, Ai+1).

Lemma 3.12. We obtain projective resolutions

. . . −→
⊕
A,u,B

Bn
A,u,B −→ . . . −→

⊕
A,u,B

B1
A,u,B −→

⊕
A

PA,1,A −→ a −→ 0,

and likewise with Bn
A,u,B replaced by B̄n

A,u,B , where the value

⊕
v=zun−1 ...u0w

A0,...,An
az(An, D) ⊗ ⊗n−1

i=0 aui (Ai, Ai+1) ⊗ aw(C , A0)

dn

��⊕
v=z′vn−2 ...v0w′

B0,...,Bn

az′ (Bn−1, D) ⊗ ⊗n−2
i=0 avi (Bi, Bi+1) ⊗ aw′ (C , B0)

of the differential on a fixed (C , v, D) is given by

dn(an, . . . , a0, a−1) =
n∑

i=0

(−1)i(an, . . . , µ(ai, ai−1), . . . , a−1).
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�

Proof. Like in the classical proof, one can easily write down a k-linear 0-homotopy.

Note that since te differential respects B̄n, we also obtain a projective resolution with

Bn replaced by B̄n. �

The projective resolutions of Lemma 3.12 are the bar resolution B(a) and the

normalized bar resolution B̄(a) of a.

Proposition 3.13. Let a be a U-graded category. There is an isomorphism of complexes

C(a) ∼= HomBimodU (a)(B(a), a).

The canonical epimorphism B(a) −→ B̄(a) induces a subcomplex

C̄(a) −→ C(a)

which is a subhomotopy G − (hencesubB∞−)algebra. Moreover, the inclusion is a quasi-

isomorphism and the cohomology of both sides is given by

H Hn(a) = Extn
BimodU (a)(a, a). �

Proof. Like in the classical situation, this is easy. �

Note that the identity element (1au(A,B) ∈ Homk(au(A, B), au(A, B))) ∈ C(a)1 of the

brace algebra C(a)[1] does not belong to C̄(a), and neither does the element µ ∈ C(a)2.

3.3 Deformations of map-graded categories

As in the case of associative algebras, the Hochschild complex C(a) of an associative U-

graded quiver a controls the algebraic deformation theory of its multiplication µ ∈ C2(a).

From now on, let k be a field and Art(k) the category of artin local k-algebras

(R, m) with residue field k. We will consider and compare a number of deformation

pseudofunctors

Art(k) −→ Gd

with values in groupoids. Deformation pseudofunctors arise in the following way.



Hochschild Cohomology of Presheaves 25

Definition 3.14. Let F : Art(k) −→ Cat be a pseudofunctor and consider an object X ∈
F (k). An R-deformation of X is an object Y ∈ F (R), together with an F (k)-isomorphism

f : F (R −→ k)(Y) −→ X. An equivalence between deformations (Y, f ) and (Y′, f ′) is an

F (R)-isomorphism g : Y −→ Y′ with f ′F (R −→ k)(g) = f . The R-deformations of X and

their equivalences form a deformation groupoid DefF ,X(R), giving rise to a deformation

pseudofunctor DefF ,X : Art(k) −→ Gd. �

A U-graded R-category a is called flat if all the au(A, B) are flat R-modules (or,

equivalently, since R is in Art(k), free R-modules). We denote the full subcategory of R-flat

U-graded categories by Mapgrfl(R). We will look at the pseudofunctors

Mapgrfl : Art(k)
op −→ Cat : R 
−→ Mapgrfl(R)

and

Fibgrfl : Art(k)
op −→ Cat : R 
−→ Fibgrfl(R),

where a morphism R′ −→ R in Art(k) corresponds to R ⊗R′ − : Mapgrfl(R′) −→ Mapgrfl(R)

and similarly for Fibgrfl. For a U-graded k-category a, we consider the deformation pseud-

ofunctors Defa = DefMapgrfl,a and Defa
fib = DefFibgrfl,a.

In order to relate deformations to the Hochschild complex, we introduce three

more deformation pseudofunctors.

Definition 3.15. Let (a, µ) be an associative U-graded k-quiver.

(1) An R-deformation of µ is a structure µ̄ of associative U-graded R-quiver on

R ⊗k a = a ⊕ (m ⊗k a) that reduces to µ on a.

(2) An equivalence between deformations µ̄ and µ̄′ is an isomorphism ϕ : (R ⊗k

a, µ̄) −→ (R ⊗k a, µ̄′) that reduces to 1 : (a, µ) −→ (a, µ).

(3) The associated deformation pseudofunctor is denoted by Defµ
a .

Let (a, µ, id) be a U-graded k-category.

(1) An R-deformation of µ respecting id is a composition structure µ̄ on R ⊗k

a that reduces to µ on a, such that (R ⊗k a, µ̄, id) becomes a U-graded R-

category.

(2) An equivalence between deformations µ̄ and µ̄′ is an isomorphism ϕ : (R ⊗k

a, µ̄, id) −→ (R ⊗k a, µ̄′, id) that reduces to 1 : (a, µ, id) −→ (a, µ, id).
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(3) The associated deformation pseudofunctor is denoted by Defµ

a,id .

Let (a, µ, id, δ) be a fibered U-graded k-category.

(1) A fibered R-deformation of µ is a composition structure µ̄ on R ⊗k a that

reduces to µ on a, such that (R ⊗k a, µ̄, id, δ) becomes a fibered U-graded

R-category.

(2) An equivalence of fibered deformations µ̄ and µ̄′ is an isomorphism (ϕ, γ ) :

(R ⊗k a, µ̄, id, δ) −→ (R ⊗k a, µ̄′, id, δ) that reduces to (1, 1) : (a, µ, id, δ) −→
(a, µ, id, δ).

(3) The associated deformation pseudofunctor is denoted by Defµ

a,id,δ. �

Of course, dg Lie algebras are another source of deformation pseudofunctors.

We briefly recall the idea. Let L be a nilpotent dg Lie algebra. We denote MC (L) =
{x ∈ L1 | d(x) + 1/2[x, x] = 0}, the set of solutions of the Maurer Cartan equation. The Lie

algebra L0 has an infinitesimal action ρ on MC (L) given by ρ(y)(x) = d(y) + [x, y] for y ∈ L0,

x ∈ L1, that integrates to an action of G = exp(L0) on MC (L). The Maurer Cartan groupoid

(also called the Deligne groupoid) MC (L) of L is the natural groupoid associated to this

action.

Now let L be an arbitrary dg Lie algebra. For every (R, m) ∈ Art(k), we obtain a

nilpotent dg Lie algebra m ⊗k L, and we obtain a deformation pseudofunctor DefL with

DefL (R) = MC (m ⊗k L).

Proposition 3.16. Let (a, µ) be an associative U-graded quiver. There is an isomorphism

of deformation pseudofunctors

DefC(a) −→ Defµ
a . �

Proof. By definition, an R-deformation of µ is determined by an element µ′ ∈ m ⊗k

C(a) via the injection m ⊗k C(a) −→ C(R ⊗k a) : µ′ 
−→ µ + µ′. The fact that µ′ defines a

deformation is equivalent to (µ + µ′) • (µ + µ′) = 0, or in terms of m ⊗k C(a), to µ • µ′ +
µ′ • µ + µ′ • µ′ = 0, which translates precisely into the Maurer Cartan equation. For an

arbitrary ϕ ∈ m ⊗k C1(a), we obtain an isomorphism of quivers exp(ϕ) : R ⊗k a −→ R ⊗k a,

yielding actions on C(R ⊗k a) and m ⊗k C(a) by “transport of structure.” As in the case

of associative algebras, the differential of this action is seen to coincide with the one

defining the Maurer Cartan groupoid. �
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For a U-graded category a, we are interested in deformations preserving the

identity id of a.

Proposition 3.17. Let (a, µ, id) be a U-graded category. There is an isomorphism of

deformation pseudofunctors

DefC̄(a) −→ Defµ

a,id . �

Proof. Starting from the isomorphism of Proposition 3.16, it is immediate that µ̄ =
µ + µ′ respects id if and only if (µ + µ′)(id, a) = a = (µ + µ′)(a, id) = 0, if and only if

µ′(id, a) = 0 = µ′(a, id), if and only if µ′ belongs to m ⊗k C̄(a). �

Proposition 3.18. Let (a, µ, id) be a U-graded category. The natural map

Defµ

a,id −→ Defµ
a

is an equivalence. �

Proof. According to the quasi-isomorphism theorem, the quasi-isomorphism C̄(a) −→
C(a) of dg Lie algebras induces an equivalence of deformation functors DefC̄(a) −→ DefC(a).

Via the isomorphisms of Propositions 3.16 and 3.17, this equivalence corresponds pre-

cisely to the natural Defµ

a,id −→ Defµ
a . �

Proposition 3.19. Let (a, µ, id) be a U-graded category. The natural map

Defµ

a,id −→ Defa

is an equivalence. �

Proof. The map is fully faithful by definition. Suppose b̄, together with the isomor-

phism ϕ : b = k ⊗R b̄ −→ a is an R-deformation of a. By flatness we may suppose, by

changing b̄ up to equivalence of deformations, that b̄u(A, B) = R ⊗k bu(A, B). We obtain an

isomorphism R ⊗k ϕ : b̄ −→ R ⊗k a of U-R-quivers, making it possible to transport the

composition of b̄ to a composition µ̄ deforming µ. By Proposition 3.18, µ̄ is equivalent

to a deformation µ̄′ of µ respecting id, and this equivalence of deformations necessarily

preserves the identities. �
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Proposition 3.20. Let (a, µ, id, δ) be a fibered U-graded category. The natural map

Defµ

a,id,δ −→ Defµ

a,id

is an isomorphism. �

Proof. Let µ̄ be an R-deformation of µ respecting id. When we consider the ele-

ments δu,A ∈ au(A, B) ⊆ R ⊗k au(A, B), the relevant morphisms µ̄(δ, −) lift the morphisms

µ(δ, −), whence they remain isomorphisms and the δu,A remain cartesian in (R ⊗k a, µ̄).

Consequently, µ̄ is a fibered R-deformation of µ. Now suppose ϕ : (R ⊗k a, µ̄, id) −→
(R ⊗k a, µ̄′, id) is an equivalence of deformations of µ respecting id. According to Propo-

sition 2.7, there is a unique isomorphism of fibered categories (ϕ, γ ) : (R ⊗k a, µ̄, id, δ) −→
(R ⊗k a, µ̄′, id, δ), which is readily seen to deform the identity morphism. �

Proposition 3.21. Let (a, µ, id, δ) be a fibered U-graded category. The natural map

Defµ

a,id,δ −→ Defa
fib

is an equivalence. �

Proof. The map is fully faithful by definition. By Proposition 3.19, a fibered deformation

b̄ of a is isomorphic as a graded deformation to a deformation (R ⊗k a, µ̄, id). Hence,

by Propositions 3.20 and 2.7, it is isomorphic as a fibered deformation to (R ⊗k a, µ̄,

id, δ). �

3.4 Deformations of Pseudofunctors

Next we apply the results of the previous section to deformations of pseudofunctors

(with a special interest in presheaves).

Proposition 3.22. Consider pseudofunctors F , G : Art(k) −→ Cat and a morphism of

pseudofunctors � : F −→ G. Consider an object X ∈ F (k) and its image Y = �(k)(X) ∈
G(k). If � is an equivalence (respectively, an isomorphism), then so is the induced

DefF ,X −→ DefG,Y. �

Proof. This is easily seen. �



Hochschild Cohomology of Presheaves 29

A U-R-pseudofunctor A is called flat if all the modules A(U )(A, B) are flat over R.

Proposition 3.23. There is a square of pseudofunctors Art(k) −→ Cat,

F = Psfunfl �� Fibgrfl = G

F0 = Psfunfl
0

��

��

Fibgrfl
0 = G0

��

in which all the arrows are equivalences, and the lower arrow is an isomorphism. It

induces the following equivalences of deformation pseudofunctors:

(1) DefA0 = DefF0,A −→ DefF ,A = DefA for A ∈ Psfun0(k);

(2) Defa
fib,0 = DefG0,a −→ DefG,a = Defa

fib for a ∈ Fibgr0(k);

(3) DefA = DefF ,A −→ DefG,a = Defa
fib for A ∈ Psfun(k);

(4) DefA0 = DefF0,a −→ DefG0,A = Defa
fib,0 for A ∈ Psfun0(k),

in which the last one is an isomorphism, and where a is the U-graded category associated

to A. �

Proof. This immediately follows from Theorem 2.22 and Proposition 3.22. �

For (A, l, 1, 1) ∈ Psfun0(k), we also consider the following deformation pseudofunc-

tor.

Definition 3.24. Consider (A, l, 1, 1) ∈ Psfun0(k).

(1) An R-deformation of l is a lax structure l̄ on Ā = R ⊗k A = A ⊕ (m ⊗k A) that

reduces to l on A, such that (Ā, l̄, 1, 1) is a U-R-pseudofunctor.

(2) An equivalence between deformations l̄ and l̄ ′ is an isomorphism ( f , β) :

(Ā, l̄, 1, 1) −→ (Ā, l̄ ′, 1, 1) that reduces to the identity (1, 1) on A.

(3) The associated deformation pseudofunctor is denoted by Defl
A,1,1. �
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Proposition 3.25. Let (A, l, 1, 1) be a pseudofunctor in Psfun0(k) and (a, µ, id, δ) the asso-

ciated fibered-graded category. There is square of deformation pseudofunctors

DefA0
�� Defa

fib,0

Defl
A,1,1

��

�� Defµ

a,id,δ

��

in which the horizontal arrows are isomorphisms and the vertical arrows are equiva-

lences. �

Proof. We already know from Proposition 3.23(4) that the upper arrow is an isomor-

phism. By Proposition 2.23, the lower arrow is an isomorphism too. It then suffices to

show that the right arrow is an equivalence. For this, it suffices to note that the equiva-

lence Defµ

a,id,δ −→ Defa
fib of Proposition 3.21 factors through Defa

fib,0. �

3.5 Hochschild cohomology of pseudofunctors

The results of the previous sections suggest the following definition.

Definition 3.26. Let A be a pseudofunctor with associated fibered-graded category a.

The Hochschild complex of A is C(A) = C(a). �

Theorem 3.27. For an arbitrary pseudofunctorA, there is an equivalence of deformation

functors

DefA ∼= DefC(A).

For a pseudofunctor (A, l, 1, 1) ∈ Psfun0, there is an isomorphism of deformation functors

Defl
A,1,1

∼= DefC̄(A). �

Proof. This follows from putting together all the results of the previous two

sections. �

Pseudofunctors over a category U allow a tensor product and notions of modules

and bimodules, extending the same notions for presheaves. The Gerstenhaber–Schack
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complex CGS(A) computes HnCGS(A) = Extn
BimodU (A)(A,A), and their isomorphisms

HnCGS(A) ∼= HnC(A) are a special case of their General Cohomology Comparison Theorem

(GCCT) [3]. In a subsequent paper, we will prove the following “CCT for pseudofunctors.”

Theorem 3.28. Let A be a pseudofunctor and a its associated U-graded category. There

is a canonical functor

BimodU (A) −→ BimodU (a)

that induces a fully faithful functor between the derived categories

D(BimodU (A)) −→ D(BimodU (a)).
�

In particular, for a presheaf A, our complex C(A) = C(a) computes the same

Hochschild cohomology as CGS(A), but to understand this entire Hochschild cohomology

in terms of deformations, one should view A as pseudofunctor (that happened to be a

presheaf).
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